
Supplemental Information for:1

Spin Hamiltonian in the Modulated2

Momenta of Light

Hr = −
∑
j,h

J(Rj −Rh)sj · sh = −
∑
j,h

J(rjh)sj · sh, (S1)

where sj is a spin at the position of Rj. The displacement between two spins is denoted16

as rjh = Rj −Rh, and J(rjh) is the interaction strength function. In the XY model, sj17

can be represented by a planar rotator θj. Therefore, the Hamiltonian is rewritten as18

Hr = −
∑
j,h

J(rjh) cos(θj − θh). (S2)

Here, J(rjh) can be represented by its Fourier spectrum19

J(rjh) =

∫∫ ∞

−∞
V (k)e−i(rjh·k)dkxdky, (S3)

that is20

Hr = −
∑
j,h

∫∫ ∞

−∞
V (k)e−i(rjh·k)dkxdky cos(θj − θh), (S4)
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14  Supplementary  Note  1.  Theoretical  Derivation

15  The  spin  Hamiltonian  of  the  classical  2D  XY  model  is  defined  as



where rjh = (xj − xh, yj − yh), k = (kx, ky).21

In optics, the light field modulated by a spatial light modulator (SLM) is22

E(x, y) =
∑
j

ξjeiθjrectΛ(x−xj, y−yj) = rectΛ(x, y)⊗
(∑

ξjeiθjδ(x− xj, y − yj)
)
, (S5)

where ξj and θj are the amplitude and phase of the light field at the position (xj, yj).23

The function rectΛ(x, y) arises from the rectangular shape of the pixel, and Λ is the side24

length of the pixel. The modulated light field in the momentum space is25

Ẽ(kx, ky) = F
(
rectΛ(x, y)

) (∑
ξjeiθjF

(
δ(x, y)

)
e−i(kxxj+kyyj)

)
. (S6)

Note that rectΛ(x, y) = rectΛ(x)rectΛ(y). Hence,26

F
(
rectΛ(x, y)

)
= Λsinc

(
Λkx
2

)
Λsinc

(
Λky
2

)
. (S7)

In this work, we do not consider the amplitude modulations, so we set ξj = 1. Moreover,27

we assume that the pixel size of SLM is very small so that Λsinc
(
Λkx
2

)
Λsinc

(
Λky
2

)
≈ 1.28

To simplify the formula, we define a normalized momentum-space light intensity29

I(kx, ky) = −1

2

∑
j,h

e
i
(
(θj−θh)−

(
kx(xj−xh)+ky(yj−yh)

))
. (S8)

Furthermore, we multiply the momentum-space light intensity by a modulation function30

V (kx, ky) and integral it over the entire momentum space. By this means, we obtain a31

new physical quantity:32

Hk =

∫∫ ∞

−∞
I(kx, ky)V (kx, ky)dkxdky

= −1

2

∫∫ ∞

−∞

∑
j,h

e
i
(
(θj−θh)−

(
kx(xj−xh)+ky(yj−yh)

))
V (kx, ky)dkxdky

= −1

2

∑
j,h

∫∫ ∞

−∞
e
i
(
(θj−θh)−

(
kx(xj−xh)+ky(yj−yh)

))
V (kx, ky)dkxdky

= −1

2

∑
j,h

ei(θj−θh)

∫∫ ∞

−∞
e−i

(
kx(xj−xh)+ky(yj−yh)

)
V (kx, ky)dkxdky

= −
∑
j,h

cos (θj − θh)

∫∫ ∞

−∞
e−i

(
kx(xj−xh)+ky(yj−yh)

)
V (kx, ky)dkxdky.

(S9)

Clearly,
∫∫∞

−∞ e−i
(
kx(xj−xh)+ky(yj−yh)

)
V (kx, ky)dkxdky = J(rjh). Comparing Eq. S9 and33

Eq. S4, we find34

Hk = −
∑
j,h

cos (θj − θh)J(rjh) = Hr. (S10)
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Therefore, Hk is the spin Hamiltonian of the XY model represented in the momentum-35

space of light. This equation can be regarded as a generalized form of the Plancherel36

theorem, also known as Parseval–Plancherel theory. Let V (kx, ky) = 1, it can be specified37

as the conventional Plancherel theorem that describes light diffraction. Otherwise, it38

connects distinct two-body spin Hamiltonians from momentum-space modulation of light39

diffraction.40

Supplementary Note 2. Experimental Setup41

In our experiment, a laser beam at the wavelength of λ = 532nm and with a beam width42

of 1mm is expanded 50 times using a telescope system composed of two lenses, L1 and43

L2, to achieve a uniform amplitude wavefront (see Figure S1). The polarizer and half-44

wave plate are used to control the incident polarization to align with the modulation45

polarization of the phase-only SLM. After passing through an optical aperture, the laser46

beam is split by a beam splitter (BS) into two branches. One branch is modulated by the47

SLM. The modulated light passes through a lens L3 (f = 150.5mm) and is captured by a48

CMOS camera located in the momentum space. The other branch serves as the reference49

light. The intensity is also captured by the CMOS camera but at a different area (see50

Figure S4). This reference light is used to monitor the intensity fluctuation of the optical51

system to reduce the experimental error. The SLM contains 1920 × 1080 pixels, with a52

pixel size of 4.5µm×4.5µm. In the experiments, we use M ×M pixels as a superpixel to53

encode a single spin. Specifically, for the J1-J2-J3 model experiments, we used M = 40,54

while for the XY model experiments, we used M = 20 . The CMOS camera (QHYCCD55

QHY294M Pro) contains 4164 × 2796 pixels, with a pixel size of 4.63µm×4.63µm. The56

intensity depth for the CMOS pixel is 16 bits. A computer system is used to control the57

phases of SLM and record the data from CMOS, facilitating real-time feedback during58

optical computations.59
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NDF: neutral density filter, L1-3: lens, P: polarizer, HWP: half-wave plate, M: mirror,
BS: beam splitter, SLM: spatial light modulator

Figure S1: Experiment Setup.

Supplementary Note 3. Noise Analysis in the Experiments60

3.1 Choosing the Momentum Space Integral Range61

J(rij) represents the interaction between each spin and the other spins. For the case of62

nearest-neighbor interactions , each spin in the system (represented by the large black63

dots at the center in Figure S2) interacts with the four neighboring spins located above,64

below, left, and right. According to Eq.(S4), the ideal integral range of the momentum-65

space is infinite. In the experiment, we set the integral range of modulated momentum-66

space as [−2π/Λ, 2π/Λ] as a good approximation. Considering the nearest-neighbor (NN)67

interaction as an example (see Figure S2), the inverse Fourier transform J ′(rij) agrees well68

with the original J(rij). As a comparison, if we set the integral range as [−π/Λ, π/Λ],69

incorrect interactions emerge in J ′(rij).70
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Figure S2: The impact of the integral range of momentum space on the spin
interaction function. (a) The NN interaction strength function J(rij) and its Fourier
transform V (k) in the range of [−5π/Λ, 5π/Λ]. (b) The Fourier transform V (k) in the
range of [−2π/Λ, 2π/Λ] and its inverse Fourier transform J ′(rij). (c) The Fourier trans-
form V (k) in the range of [−π/Λ, π/Λ] and its inverse Fourier transform J ′(rij).

3.2 The Influence from the 0-order Diffraction71

The SLM has a modulation efficiency of 75%, which means that part of the light will72

reflect from the SLM without being manipulated. This 0-order diffraction (also known as73

background) is focused as a point in the center of the momentum space (see Figure S3(b)),74

severely affecting the calculation precision of spin Hamiltonian. To reduce the noise from75

0-order diffraction, we add a Fresnel lens phase front onto the SLM to separate the focal76

planes of the 0-order diffraction and the modulated light to different locations along the77

light path. Therefore, at the momentum plane of modulated light, the 0-order diffraction78

is divergent as a broad and weak background (see Figure S3(c)). By this means, the noise79

from the imperfect SLM modulation efficiency is significantly reduced.80
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Figure  S3:  Superimposing  a  Fresnel  lens  phase  to  reduce  the  influence  from
the  unmodulated  .  (a)  left:  A  random  phase  distribution  φ(r)  encoding  the  XY  spins;
middle:  A  Fresnel  lens  phase  distribution  φfl(r);  right:  The  phase  after  superposition
φ(r)  +  φfl(r).  (b)  The  momentum-space  intensity  distribution  of  the  random  phase-
modulated  light.  (c)  The  momentum-space  intensity  distribution  of  the  random  phase-
modulated  light  with  the  lens  phase  superimposed  (background  reduced).

81  3.3  Reducing  the  Noise  From  Light  Intensity  Fluctuations
82  According  to  Eq.(S9),  the  value  of  Hk  depends  on  light  intensity.  In  the  experiment,
83  light  intensity  fluctuations  are  inevitable  and  will  introduce  calculation  errors  for  Hk.
84  Particularly,  this  noise  is  more  pronounced  for  the  XY  model  than  the  Ising  model,  as
85  the  random  flips  from  the  Monte  Carlo  method  will  actively  induce  a  much  smaller  in-
86  tensity  change  for  the  XY  model,  which  can  be  easily  overlapped  by  the  system’s  random
87  fluctuations.  To  reduce  this  noise,  we  introduced  the  reference  light  as  depicted  in  Figure
88  S1.  As  we  split  the  laser  into  two  branches,  one  of  which  serves  as  the  experimental  light
89  for  Hamiltonian  Hk  calculations  (marked  as  the  red  box  in  Figure  S4).  The  other  branch
90  acts  as  reference  light,  illuminating  a  separated  range  on  the  CMOS  camera  (marked  as
91  the  blue  box  in  Figure  S4).  If  we  focus  the  reference  light  directly  onto  the  camera,  it  is
92  more  likely  to  cause  overexposure  and  introduce  noise  due  to  the  beam’s  spatial  vibra-
93  tions.  Therefore,  we  directed  the  plane wave  (larger  reference  beam)  onto  the  CMOS
94  camera.  Additionally,  by  increasing  the  light  intensity,  we  can  reduce  the  background
95  noise.  The  CMOS  camera  simultaneously  captures  the  momentum-space  intensity  I(k)
96  and  the  reference  light  intensity  Iref.  The  experimentally  calibrated  Hamiltonian  Hk  is
97  calculated  using



Hk =

∫∫∞
−∞ I(kx, ky)V (kx, ky)dkxdky∫∫∞

−∞ Irefdkxdky
. (S11)

Figure S4: The momentum-space intensity distribution and the reference light.
The momentum space is the red box region and the reference light illuminates the blue
box region.

As an example, we have shown the measured light intensity and the calculated Hr in98

Figure S5 (a) and (b) for 1000 iterations. It can be seen that the intensity fluctuates by99

approximately 6%. Although this fluctuation range is small for linear optics, it is critical100

in the spin model simulator to determine the dynamics of the spin configuration, which is101

very sensitive to Hamiltonian fluctuation. The Hr is calculated by extracting the phase102

distributions from the SLM, hence it is not affected by the intensity fluctuations in the103

momentum space. Therefore, an indication of the noise level from intensity fluctuations104

can be revealed by the experimentally observed linear correspondence between Hr and Hk.105

Figure S5 (c) and (d) display the Hk with and without using reference light, respectively.106

Notably, the error in Hk is smaller using the reference light, as can be seen by the improved107

goodness of fitting from the coefficient of determination R2.108
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Figure S6: Four-point marker method to align momentum space

8

Figure  S5:  The  impact  of  light  intensity  fluctuations  on  the  calculation  of  Hk.
(a)  The  monitored  light  intensity  fluctuations.  The  dashed  line  is  the  averaged  value  over
1000  iterations.  (b)  The  recorded  Hamiltonian  Hr.  (c)  left:  The  observed  Hk  with  a 
reference  light;  right:  the  Hr  and  Hk  correspondence.  (d)  left:  The  observed  Hk  without 
a  reference  light;  right:  the  Hr  and  Hk  correspondence.  The  black  lines  are  linear  fitting 
lines.

109  3.4  Momentum  Space  Alignment  Method  in  Experiments
110  We  use  a  four-point  marker  method  to  align  the  system,  ensure  that  V  (k)  is  spatially
111  matched  with  I(k)  with  small  deviation  (Fig.  S6).  The  marker  points  are  positioned  at
112  (±π/Λ,  ±π/Λ),  which  are  experimentally  generated  with  holography,  as  shown  in  Figure
113  S6(b).  In  our  experiments,  the  radius  of  each  marker  spot  is  approximately  δk  =  30µm,
114  while  the  side  length  of  the  measured  rectangular  momentum  space  is  about  ∆K  =
115  4280µm.  Thus,  the  maximum  misalignment  error  is  about  δk/∆K  ∼  0.7%.



3.5 Analysis of the Impact of Lens Aberrations in Experiments116

Our system operates under the paraxial approximation, where the aberrations are small117

and negligible. This is further confirmed by the good agreement between theory and118

experiment. Additionally, we performed calculations to estimate the performance of our119

imaging system in both aberrated and ideal Fourier transform cases. The results are120

presented in Figure S7. Using different random phases as input spin configurations, we121

calculated the aberration case with the spherical wavefront of our lens. In comparison,122

the non-aberration case was calculated using the ideal Fourier transform. The results123

show a strong linearity between the two cases, indicating that the impact of aberration is124

small.125

Figure S7: Analysis of the impact of lens aberrations in experiments. (a) Calcu-
lated I(k) from different random phase distributions. The aberration I(k) are obtained
from spherical phase front of the lens and the non-aberration I(k) are obtained from
Fourier transform. (b) The resulted linearity between the two calculation methods.

Supplementary Note 4. The Flow Charts of Optical Simulator126

Figure S8 and Figure S9 illustrate the quenching and annealing procedures of the spin127

model simulator, respectively. Prior to the annealing experiment, a quenching experiment128

is performed to determine an experimental fitting factor f1 that links Hk and Hr by129

Hk = f1Hr, depending on the light intensity, super-pixel size, lens focus distance, camera130

settings, etc. After the f1 factor is determined, we can implement optical annealing using131

the Metropolis algorithm.132
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Figure S8: The flow chart of quenching experiment in the optical simulator.
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Figure S9: The flow chart of annealing experiment in the optical simulator.

Supplementary Note 5. Spin and Momentum-space Light Evo-133

lution During the J1-J2-J3 Model Opti-134

cal Annealing135

We selectively show the experimentally observed spin φ(r) and corresponding momentum-136

space intensity distributions I(k) of the J1-J2-J3 model with different interactions during137

the annealing process at various temperatures.138
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(a) R1 = 0.1, R2 = 0.1

(b) R1 = 0.5, R2 = 0.9

(c) R1 = 0.5, R2 = 0.9
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(d) R1 = 0.5, R2 = 0.3

(e) R1 = 0.9, R2 = 0.1

Figure S10: The experimental spin φ(r) and corresponding momentum-space
intensity distributions I(k) of the J1-J2-J3 model with different interactions
during the annealing process at various temperatures.

Supplementary Note 6. Calculating the Number of Vortices in139

BKT Dynamics140

To visualize the vortex distributions and precisely count the number of vortices, the141

interpolation divides the interval between two phase values along each dimension by Nin142

times, forming a finer grid, and linear interpolation is then performed on this grid (143

Figure S11). As the number of interpolations increases, the vortex gradually becomes144

more distinct and easier to be observed. Figure S12 shows coarsening process during the145

XY model quenching in main text.146
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Figure S11: Phase interpolation method. The interpolation divides the interval
between two phase values along each dimension by N in times, forming a finer grid, and
linear interpolation is then performed on this grid. As the number of interpolations
increases, the vortex gradually becomes more distinct and easier to be observed.

Figure S12: Coarsening process during the XY model quenching.The numbers
displayed on the top of the pictures are iteration counts.

The method to calculate the vortices is as follows: First, we compute the phase difference147

between adjacent phases around a given point, ∆φi = φi+1 mod 8 − φi (Figure S13). If148 ∑8
1 sign(∆φi) = ±6, it indicates that the phase around this point is either increasing or149

decreasing. Additionally, if the sum of the absolute phase differences
∑8

1 |∆φi| = 2π, a150
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Figure S13: The method to extract the number of vortices.

15

151  vortex  is  detected.  To  avoid  double-counting  vortices  due  to  numerical  errors,  we  use  a
152  breadth-first  search  (BFS)  algorithm,  ensuring  that  each  vortex  is  counted  only  once.  The
153  interpolation  number,  Nin,  has  a  samll  effect  on  the  vortex  count.  For  values  of  Nin  >  2,
154  the  vortex  count  stabilizes  (Figure  S14).



Figure S14: The impact of interpolation on the calculation of the number of
vortices. (a) Spin distributions interpolated by different interpolation numbers of inter-
polated points corresponding to the black dashed line in (b). Red and blue dots represent
clockwise and anticlockwise vortices, respectively. The numbers on the top of the pic-
tures are interpolation numbers Nin. (b) The calculated number of vortices of different
numbers of interpolated points.

Supplementary Note 7. Quenching Experiments of Ferromagnetic155

Ising Models with NN Interaction and156

7NN Interaction157

We performed additional experiments to show the quenching processes of the ferromag-158

netic Ising models with a typical NN interaction, and a typical long-range interaction159

(7NN). These experiments are important evidence to demonstrate our spin model simula-160

tor as a useful tool to explore various spin models ranging from short-range to long-range161

interactions. For short-range interactions and long-range interactions, they correspond to162

different V (k) in momentum space (see Figure S15 (a,b)). Specifically, for an all-to-all in-163

16



teraction where J(rij) is constant in the real space, V(k) becomes a Dirac delta function.164

In this case, there is no phase transition. For the NN interaction, a phase transition occurs165

at a Curie temperature Tc about 2.269J , where J represents the interaction strength. If166

T > Tc, the spin system is in a disordered phase; if T < Tc, it transits to an ordered phase.167

In our experiments, the NN interaction and 7NN interaction systems both evolve to the168

ordered phase at the quenching temperature T1 = 0 (see Figure S15 (c)). However, due169

to the short-range nature of NN interaction, it exhibits more magnetic domains. At the170

quenching temperature of T2 = 4, the 7NN interaction system still evolves to an ordered171

phase, indicating a lack of phase transition in long-range interaction systems. Meanwhile,172

the 7NN interaction system evolves to a disordered phase (see Figure S15 (d)). These173

experimental results agree well with theoretical predictions.174
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Figure S15: Quenching experiments of the Ising model with NN interaction and
7NN interaction. (a)(b) The (a) NN and (b) 7NN interaction strength functions J(rij)
and the corresponding Fourier transforms V (k). (c)(d) The simulated and experimental
quenching process of the Ising model with NN interaction and 7NN interaction at the
temperature (c) T1 = 0 and (d)T2 = 4. Simulated results are obtained from statistical
calculations. The graphs on the far right side are the final spin distributions from the
experiments.

Supplementary Note 8. The method for realizing arbitrary in-175

teractions176

In the experiments described in the main text, we map the spins onto the SLM using177

a standard method, employing square lattices (as in the J1-J2-J3 and XY models). We178

observe that both the spin-spin interaction function J(rij) and the function V (k) ex-179

hibit centrosymmetry. To achieve non-centrosymmetric or uniquely defined interactions180

between spin pairs, we can map the spins onto different lattice structures on the SLM.181
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These types of modulations can be experimentally implemented using an amplitude-and-182

phase SLM or by utilizing an additional phase-front encoding approach, as described in183

Figure S3.184

In Figure S16 (a), non-centrosymmetric interactions are achieved by adjusting the dis-185

tances between adjacent spins. In the second case shown in Figure S16, the displacements186

rij are assigned randomly for different spin pairs, making rij unique for each pair. As a187

result, we can assign J(rij) = Jij as unique values for each pair. However, it is important188

to note that the maximum number of spins that can be encoded on the SLM is reduced.189

In the most general case, the maximum number of spins decreases from L2 (the number190

of pixels on the SLM) to L.191

Figure S16: Spin systems with asymmetric and arbitrary spin interactions. (a)
An example of an non-centrosymmetric spin interaction. (b) An example of arbitrary
spin interaction. For the connected 4 spins, there are C2

4 =6 unique spin interactions,
corresponding to the 12 colored pixels in the J(rij)map. The J(rij) colormap is shown
for ri = 0 (the central black spot).

Supplementary Note 9. Experimental validation of system scal-192

ability193

We conducted two sets of experiments to demonstrate the scalability of our system by194

varying the number of spins, L2, and the super-pixel size, M . The results are shown195

in Figures S17 and S18. Both sets of experiments were based on the nearest-neighbor196

interaction Ising model, where we compared the optically computed Hamiltonians (Hk)197

with the numerical calculations (Hr) to evaluate the accuracy of our system. The optically198

measured Hk and the calculated Hr values are represented by dots, with fitted lines for199

comparison. Selected I(k) are shown in the lower panels.200

To quantify the prediction accuracy of Hk relative to Hr, we used the coefficient of de-201

termination, R2. Notably, an R2 value approaching 1 indicates a good linear fit, with202

R2 = 1 representing a perfect prediction. For these experiments, the R2 values were very203
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close to 1, demonstrating excellent accuracy across various spin sizes. These results sug-204

gest that the measurement precision remains consistently high, regardless of changes in205

system scale or super-pixel size.206

In summary, the experimental results validate the strong scalability and robustness of207

our system, maintaining precise measurement accuracy under varying experimental con-208

ditions.209

Figure S17: Experimental Performance with different number of super-pixel M
and spin numbers L2 = 400. (a) M = 15; (b) M = 20; (c) M = 25; (d) M = 30. The
lower panels are selected experimental I(k).
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Figure S18: Experimental Performance with different spin numbers L2 and
number of super-pixel M = 10.(a) L2 = 400; (b) L2 = 2500; (c) L2 = 10000. The
lower panels are selected experimental I(k).
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